

Petroleum Experts

IPM and DOF Enhancements

IPM 10 / IFM 4.1 / IVM 7

GAP

MULTIPHASE NETWORK MODELLING AND OPTIMISATION

Developments for GAP can be split into 3 categories:

- Calculation enhancements related to the solver, optimiser and pressure/rate response options
- Engineering Enhancements new engineering calculations and features (e.g. new items)
- GAP structure and data handling enhancements user input/output

Calculation enhancements:

– Parallelization

- In many cases we see a 2x to 4x gain in calculation time.
- Gains will be model specific and will still require sound models.
- External DLLs are not being parallelized

Calculation enhancements:

- Rule Based Method extension for injection systems with tank constraints
- Rule Based Method impurity constraints
- Rule Based Method min API (max. oil density) constraint
- New constraints added to wells
- VLP generation will continue if an error is encountered during batch generation. An error will be flagged to the user upon completion
- MWA enhanced to match on gas composition

Engineering enhancements:

- New GAP items:
 - Heat Exchanger
 - User Defined Element
- New Fluid property options:
 - New PVT correlation (inline with rest of IPM)
 - Pressure corrected water viscosity
- Choke Calculation options in GAP
 - IPM 10 will allow the user to output choke size calculations from the calculated ΔP
- Flow Assurance Enhancements (accessible from main screen)
- Gas Coning Model Enhancements

Data handling – input/output enhancements:

- Compressor curves entered as ratio or energy
- New Equipment results 'tool-tip' options: custom results
- Pipe results reported using pipeline terminology
- Transfer IPR data and rel. perms from MBAL
- Decline curve or production layer data: User can add more rows to table
- Number of pipe segments allowed increased to 500
- Edit Equipment Controls validation flags added to alert user to issues
- Number of active wells in a system reported

Data handling – input/output enhancements:

- Layer and tank cumulative rates for fractional flow table supported
- Power fluid rate for jet pump wells reported as result
- Tank name provided to user if issue during validation
- Prediction start and end times reported
- GAR file size support extended

PROSPER

MULTIPHASE WELL AND PIPELINE NODAL ANALYSIS

- Flow Assurance Developments
- Artificial Lift Developments
- CBM Well Type Developments
- Other

- Flow Assurance Developments

- DNV Erosion Model
- NORSOK CO2 Corrosion Model
- New Slug Model PE5
- Slugcatcher (two phase separator) model
- Severe slugging/stability criteria
- Pipeline thermal gradient option
- Flow assurance warning plotting(Hydrate, wax etc.)
- Flow assurance for any rate in VLP or system calculation (Sensitivity PvD extension)
- Pipeline Only Nomenclature option

– Artificial Lift Developments

- Transient Gas Lift Simulator
- Gas lift adjustments with Thornhill-Craver de-rating.
- Modeling of venturi type valves (Design/Quicklook/Adjustment).
- $\boldsymbol{\cdot}$ Publishing of the GVF for HSP and ESP wells.

– CBM Well Type Developments

- PCP wells with sucker rod drive for CBM wells
- Naturally flowing CBM well
- Improvements to visualization of the pump performance plots

– Other

- New Heavy oil PVT correlation (Ghetto *et al*) for Pb, Rs, FVF and Viscosity
- Improvements to plotting
- Added an emulsion match command
- Added the gauge pressure to the reporting of the system calculation
- Improved file name display in task and title bar
- Button to transfer the viscosity coefficients from gas to oil for EoS (LBC with coefficients)
- Improvements to the cases and sensitivity interface
- Clarification of multilateral inputs
- Changes to gravel pack model (Perf Interval)

RESOLVE

ADVANCED INTEGRATION A VENDOR NEUTRAL SOLUTION FORMULATION PLATFORM

- Most features can be made commercial relatively quickly
 - Functionality added through implementation of data objects
 - Highly modular architecture
- Most of the developments discussed today have been added to the IPM9 commercial release
- Changes or additions to the underlying engines need to wait for a major release
 - These are now relatively rare

- New drivers
 - Reservoir simulators
 - T-Navigator RFD
 - Tempest Emerson
 - Process models
 - Proll Invensys

 All drivers have full 'Generic Open Server' functionality built in from the start

Generic OpenServer

- New Drivers
- All drivers have full 'Generic Open Server' functionality built in from the start
 - DOF workflows can be built which automate the application in isolation, without needing to go through RESOLVE
 - Where this didn't exist in the existing drivers, it has been back-fitted
 - The Generic OpenServer is truly 'generic'

- All drivers are fully cluster enabled
 - New drivers, and back-fitted to old drivers if necessary
 - If a model is run under the cluster, the driver detects this and will take appropriate action, e.g. will copy the data file if required
 - Includes Unisim and Hysys
 - Hysys will only work in 'exclusive' mode

- New data objects 'statistical'
 - Case manager
 - Sensitivity tool
 - @Risk (Palisade)
 - Crystal Ball (Oracle)
 - Stochastic optimisation
 - in development, to be reviewed

- New data objects **REVEAL**
 - SAGD
 - ICD analysis
 - Water chemistry
 - Main object
 - Mixer
 - PVT mixer

REVEAL

SIMULATOR FOR SPECIALISED RESERVOIR STUDIES

• New Models:

- Dedicated compositional flash calculations

Polymer shear and thermal degradation

- End point scaling
- Thermal transmissibility control, including NNCs
- Water vapour model
- Well solver options
- Generalised AICD model
- Coupling SAGD models to surface network
- Water chemistry engine updated for new database

- Oil water capillary pressure scaling
 - Maximum capillary pressure scaling
 - Initial water saturation scaling
 - By block, thermal or salinity end point scaling methods
 - Imported using equivalent keywords SWATINIT and PCW from Eclipse

Compositional PVT

- New faster dedicated engine for Reveal
- 3 phase 9 component fully thermal example

Model	Time Steps	Newton Solves	PVT Time (s)	Total Time (s)	PVT/Solve (s)
Black Oil	7	17	1.0	10.9	0.06
Old Flash	9	31	90.4	117.7	2.91
New Flash	9	26	8.6	32.9	0.33

Polymer Degradation

- Track polymer mean molecular weight
- Degrade at perforations (velocity) and reservoir (temperature)
- Modify zero shear thickening factor (TF⁰) by reduced molecular weight raised to a power

•
$$\mu = \frac{\tau}{\dot{\gamma}} = \mu_W \left(1 + \frac{TF^0 \left(\frac{mw}{mw_{ref}}\right)^p - 1}{1 + \left(\frac{\dot{\gamma}}{\dot{\gamma}_h}\right)^{n-1}} \right)$$

- TF⁰ is a function of concentration, salinity, divalent cations and temperature
- Shear rate

$$- \dot{\gamma} = \gamma_C \frac{|q_w|}{\sqrt{\frac{9}{8}\bar{k}\phi S_w k r_w}} \qquad \dot{\gamma} = \frac{8Q}{Ad_h} \qquad \dot{\gamma} = \frac{4v}{w}$$

Thermal Transmissibility

• Conduction diffusivity

 $- \dot{H} = Ak_T \nabla T$ $- \dot{Q} = \frac{Ak\nabla P}{\mu}$

- Geometrical part (A∇) calculated from geometry or estimated from transmissibility for NNCs
- Can be modelled independently from flow for inter-grid or NNC thermal conductivity using optional directional thermal transmissibility multipliers

Well Solver Options

-Well Identifica	tion				
Well Label	Well1			Enter well position by	Detailed well description 👻
🔽 Allow unets	abla TDD	Allow cross-flowAllow isolation flow		Allow reversed flow	
				Solve using rate control	Convento Detalled Well

- Allow unstable TPD
 - Allow negative slope solutions
- Allow cross-flow
 - Discontinuous solutions if disabled (not recommended)
- Allow isolation flow
 - Cross flow behind isolated detailed well zones (e.g. closed ICVs coupled with fractures)
- Allow reversed flow
 - Well defined w.r.t. base pipe tubing, but the reservoir flow may be negative (e.g. producing through annulus with base pipe injection)
- Solve using rate control
 - Fixed pressure wells that are very ill-conditioned (e.g. very large IPR with large well friction, fracture with ICDs and controlled with detailed well to surface)

Solver Options

Select Solver Options					
Fully Implicit	✓ Undersatured Rs Solve ■ Dead oil with no free gas	 Implicit temperature (significant volumetric effect Pre-eliminate wells 	s) Max Processors	Auto	4 >
	2				

- Undersaturated Rs Solve
 - Primary unknown switched between Sg and Rs if gas phase not present (recommended)
- Dead oil with no free gas
 - Make sure PVT cannot generate free gas (mainly used with steam)
- Implicit temperature
 - Very little overhead (recommended)
- Pre-eliminate wells
 - Can require large memory requirements for implicit rate wells with large number of connected blocks (e.g. fractures with 1000-10000 blocks)

12(+2) Parameter Generalised AICD

	Label	Interval Length	Effective Flow Area	Power	Referenc e Density	Referenc e Viscosity	Density Exponent	Viscosity Exponent	Rate Exponent	Density Water Exponent	Density Oil Exponent	Density Gas Exponent	Viscosity Water Exponent	Viscosity Oil Exponent	Viscosity Gas Exponent
		feet	in2		lb/ft3	centipoise									
1	Troll	10	0.155000	1.493713	55.56075	1.75	1	0.2	4	1	1	1	1	1	1
2	Test	10	0.155000	3.519850	56.18503	12	1	0.8	4.6	1	1	1	1	1	1
3	DUMMY	100	0.01	1e-6	50	1.185	1	1	1	1	1	1	1	1	1
4	DUMMY1	100	0.01	1e-5	50	1.185	1	1	2	1	1	1	1	1	1
5	Test1	10	0.155000	1.493713	55.56075	1.75	1	0.2	4	1	1	1	1	1	1
6	Test2	10	0.155000	3.519850	56.18503	12	1	0.8	4.6	1	1	1	1	1	1
7															
В															
9															
10															
11															
12															
Pressure drop = Power * Density * (Density/RefDensity)^DenExp * (RefViscosity)^Viscosity)^ViscExp * (Rate)^RateExp Density = DenW*(VolW^DenWExp) + DenO*(VolO^DenOExp) + DenG*(VolG^DenGExp) Viscosity = ViscW*(VolW^ViscWExp) + ViscO*(VolO^ViscOExp) + ViscG*(VolG^ViscGExp) FIELD UNITS Pressure drop (psi) : (Ref)Density (lb/ft3) : (Ref)Viscosity (cP) : Rate (ft3/d) METRIC UNITS Pressure drop (Bar) : (Ref)Density (kg/m3) : (Ref)Viscosity (cP) : Rate (m3/d) Units															
Gen C:\	eralised IC Users\stev	D Databse ven \AppDa	: File ta\Roaming	g\Petroleun	n Experts\J	PM9\RVIC	DEquipmen	it.pxdb							

 $\rho = \rho_w (V_w)^a + \rho_o (V_o)^b + \rho_g (V_g)^c$ $\mu = \mu_{w}(V_{w})^{d} + \mu_{o}(V_{o})^{e} + \mu_{a}(V_{a})^{f}$

 $\Delta P = F\rho \left(\frac{\rho}{\rho_0}\right)^{\alpha} \left(\frac{\mu_0}{\mu}\right)^{\beta} Q^{\gamma}$

SAGD Coupling to Surface

- Multiple SAGD well pairs connected through RESOLVE
 - May be scheduled and constrained in production and injection
- Injection and production strongly coupled
 - Cannot over-produce or over-inject
 - Surface constraints will require production and injection reduction
 - Will significantly modify steam chamber SOR efficiency etc
- Constraint passing workflow

Water Chemistry Engine

- Recommended only for advanced features in recent engine databases
 - For example pressure dependent equilibrium constants or additional species pathways
 - The new engine gives very similar results using the current default database, but is a bit slower

Interface and Visualisation

- Import ECLIPSE summary files
- NEXUS model import
- Well reporting variables added
- Fracture node property visualisation

Nexus Model Import

• Nexus Input

 In the Nexus case file (.fcs file), add the keywords EXPORT REVEAL. These should be located prior to the GRID_FILES section of the case file.

Output from Standalone

 Standalone will output files named casename.reveali, casename.revealr, and create a directory named casename.export

MBAL

ANALYTICAL RESERVOIR ENGINEERING TOOLKIT

- Fractional Flow Tables can be based on layer cumulative instead of tank cumulative
- Gas coning matching extended to allow more than three points and matching algorithm improved
- History Match fix total hydrocarbon summed for all tanks
- Ghetto et al Heavy Oil PVT correlation added (SPE 30316)
- Fractional Flow Matching Plots theoretical curve always displayed even if no valid match data

- Open Server behaviour for non-defined variables can be controlled.
- New well types added to handle diluent wells with gas lift and ESP
- Well deviation added to gravel pack model

DOF

DOF (IFM 4.1 and IVM 7) Developments

- Data-driven workflows (IVM)
 - Workflow management and execution in IVM
- Data Management (IVM)
 - Drivers for data acquisition
- Graphics Screens (IVM)
 - Controls
 - Templates
- Architecture (IVM & IFM)
- Data Exchange (IVM & IFM)
- IT considerations (IVM & IFM)

Calculations

- Data-driven workflows for
 - Preventive maintenance (ESP run-life, Compressor vibration,...)
 - 'Virtual' instrumentation in the high frequency domain (meters, gauges,..)
 - Data Validation
 - Data Filtering
 - Alarming Logic
 - Data-Driven High-Frequency Calculations
 - Performance monitoring
 - Rate estimation
 - ...

Calculations – Visual Workflows

Data Management - Drivers

IVM 7.0 has an open architecture to allow drivers to be registered to allow data acquisition from any source and any mechanism:

- Web services
- Custom files
- "Native" communication to data sources (e.g. OsiSoft PI)
- Other communication standards...

Graphic Screens - Controls

- Graphic screens are built using a series of "controls" to visualise information
 - Text boxes
 - Images
 - Shapes
 - Gauges
 - Time-based and XY Plots (new in IVM 7)
- IVM 7 has a Custom Control Plugin Framework allowing custom visualisation embedded in graphic screen

Architecture - Objectives

- Consistency
- Scalability
- Security
- Performance
- Future Proof

IFM 4.1 Architecture

- Service component runs as a windows service
- Cache data on service
- Offload processing onto service
- Supports multiple services
- Services can be geographically distributed
- Data Transfer Objects to transfer data use less memory, are encrypted and compressed

IFM 4.1 Architecture - Summary

- Consistency
 - IFM and IVM share common architecture
- Scalability
 - additional services can be deployed for failover or load balancing
- Security
 - data encrypted between client and service
- Performance
 - transferring smaller packets of compressed data
 - Server side caching for frequently requested data
- Future Proof
 - client/services architecture
 - built with ability to swap out components as technology changes

IFM 4.1 with IVM 7

Enhanced capabilities with IVM 7.0 installed

- Minimal setup to pass data between systems
- Transfer time series data
- Transfer data types other than doubles
- Make use of IVM Data Sources for reading/writing data into IVM

Other IT considerations

- IVM Server and Client available as 64 bit
- IVM Server runs as a Windows service
- All configuration of IVM Server are configured in the IVM Client (drivers, data source connections, IVM security, etc.)
- Single IVM Client can simultaneously connect to multiple IVM Servers

Time-zone/Culture Changes

- What is it?
 - The ability to change time-zone used within the application
 - The ability to change how dates/numerical data is formatted.
- Why use it?
 - Allows the user to view dates and numerical data in a familiar format and time-zone
 - Previous method was changing windows time-zone/culture

DOF Enhancements - Summary

- Software Versions
- Background
 - Model Management
 - Engineering Workflows
 - Data Models
- DOF Enhancement Discussion

IFM & IVM Data Exchange

- Configuring IVM
 - Run IFM Provider
 - Import field + visual workflow data

His Client Clinet Clinet Units Oil Field	Conditions Conditions Property Groups Database Connection Object	Data Sources Scale Types Pol ons Show Watches L	Group Object Graphic Quer brary Library Library	les Visual Workfion	Scripts	Alarr Med ps C Repo	n Recipients 🗰 Export Configuration la Library 💥 Supplemental Properties ort Groups	Drivers	ders Schedules Plugins Weit Test Misc.	
h Server Evolorer	🗑 Object Library	×								
	Object Types				Object Type Pro	perties				
adi ifm ib5 (DETEV) Ismarkismad	▲ + Add 1 to Ed		Import		P T	HS	A C Name 🔺 Ur	nit Category Comment	DataLocation	DataType D
Open Team New Team Trans Edit Mode On					4 No Group					Count=607
Victual Field	Object Type Id	Object Type Name			0 🔷	89	Analytics CGR Confidence No	one	External	DoubleFloat
Virtual Field	1	000000 WELL		^	0 🔶	F	Analytics Error Improvement Pe	rcent	External	DoubleFloat
PVF Overview	- 1	000001 System			0 4	F F	Analytics ESP Wear Factor No	one	External	DoubleFloat
A 🜔 Field Data	1	DOTOOT SEA.			0 🔷	A 1	Analytics ESP Wear Factor Pe	rcent	External	DoubleFloat
Well data - real time	1	001002 PIPE			0 🔷	R	Analytics Gas Lift Confidence No	one	External	DoubleFloat
Network data - real time	1	DOTODS FIELD			0 🔷	89 🗳	Analytics Gas Lift Confiden Pe	rcent	External	DoubleFloat
Well tests	1	001004 RESERVOOR			0 •	(P)	Analytics GOR Confidence No	one	External	DoubleFloat
Workflow Results - IFM	1	002004 ServerProcess			0 🔷	图日	Analytics GOR Confidence Pe	rcent	External	DoubleFloat
AWS Results					0 🔷	南	Analytics WC Confidence No	one	External	DoubleFloat
SQC Results					0 🔷	R 🖃	Analytics WC Confidence v Pe	rcent	External	DoubleFloat
OPT Results				24	0.	100	Analytics WGR Confidence No	one	External	DoubleFloat
MWA Results - Field					٠		AutoRate / Analytics Case 3 No	one	Internal	Int32
GLA Results	Chilest Instance			-			AutoRate / Analytics Case 3 No	one	Internal	Int32
MPFM Validation Results	Object instance					10	AutoRate / Analytics Case 3 No	ane	Internal	Int32
KPIS	+ Add 📑 Ed	it 🖹 Duplicate - 🗙 Dele	2				AutoRate / Analytics Case 3 No	one	Internal	Int32
Plot Data	Type	Name	1d		0 •	開	AutoRate Calculation Type No	one	External	UnsignedInt16
AWS VLP/IPR Curves	WELL	LE-01	1000000	^	0.	開	AutoRate Regression Error No	one	External	DoubleFloat
AWS Gradient Curves (Tub)	WELL	LE-02	1001052		0 🔷	南	AWS Config - Analytics - C No	one	Internal	DoubleFloat
AWS Gradient Curves (Cas)	WELL	LW-01	1001053		0.	兩	AWS Config - Analytics - C No	one	Internal	DoubleFloat
AWS PQ Curves	WELL	1W-02	1001054		0.	(R)	AWS Config - Analytics - C No	one	Internal	DoubleFloat
AWS Choke PC	WELL	LW-03	1001055		0.	1 (FR)	AWS Config - Analytics - C No	one	Internal	DoubleFloat
AWS GL PC Curves	WEL	100-04	1001056		0.	1999	AWS Config - Analytics - C No	one	Internal	DoubleFloat
ESP Performance - Head Curves	WELL	P-01	1001057		0.		AWS Config - Analytics - C No	one	Internal	DoubleFloat
ESP Performance - Limits	WELL	P_02	1001058		0.	1999	AWS Config - Analytics - C No	one	Internal	DoubleFloat
GL Allocation - GL Valve Perfomance	WELL	P.03	1001059		0.	199	AWS Config - Analytics - C No	one	Internal	DoubleFloat
GL Allocation - GL Surface Choke Pert	WEL	P-04	1001060			R	AWS Config - Analytics - E No	one	Internal	Int16
# 🔘 Field Settings	WELL	P.05	1001061	~	<					3
AWS Configuration	v	1.77			1.1.1					
Transaction Log										
forthy Transaction Time Defensors Id	User Id	Marhine Name	Item Name	Turrant Value	Transact	ion Text	Transaction New Tune Transaction Tu	na In Alarm	Alarm Window Source An	niration Sat Doint Val
sing management in the Neierence su	52120	machine reditie	autor reaction (Sauce and a state	(Talisaci	on reat	management terr type Theradelion ty	po arrestin	Jource Ap	Set Politit adit

IFM & IVM Data Exchange

Configuring IFM

- Build visual workflow
- Use new IVM data source item

😤 Integrated F	ield	Management (X86) 4.1.44.0 [DEBUG] -	License#:4860 - Jun 15 2015 15:02:45 : - [C:\Petex Test.vwk [Unregi]	x
Y <u>F</u> ile ⊻i	ew	<u>T</u> ools <u>W</u> indows <u>H</u> elp	- 6	₹×
🗄 🗋 💕 🛃 🕻	XI	0		
Description Del	ails	Testing Editor		
Choke Comp Excel	2	Update (Input) - GOR		only
Flowsheet Group Heat transfer eq		Name:	GOR	
Inflow Inichk Inigen		Unit:	GOR / GLR - scf/STB	
Inlinj Inlsep Ipmos		Туре:	Double	
Joint Logical operatio		IFM Data		
Piping equipmer				
		Type of Equipment:	WELL	
Models Conne		IFM Data Item Type:	Gas Oil Ratio	
Name: Type		IFM Data Item Short Name:	GOR	•
Name		Data Item Source:	IVM 🔹	Pa
		Data Item:	Gas Oil Ratio (Well Test Repository)	
			Update Cancel	
Remove		Model Req	uirement Add Remove Populate Children Edit Data Ob	bject

Calculations - Classification

IVM 7.0 Direction

Visual workflows

Open driver architecture

Extended visualisation templatability

Custom graphic controls

Provider framework

Data model enhancements

IT considerations

Platform

Extensibility

Scalability

Maintainability

Graphic Screens - Templates

- Can embed one graphic screen directly into a portion of another screen
- Extends to embedding a template as well
 - Increases maintainability of the system
 - Promotes consistency across the system

Graphic Screens – Templates

AWS Results Template

				Well-	Based	VL	P/IPR Curves
Calc Method	VLPIPR	VLP	IPR	Choke	СНР		AutoRate
Sensitivity to Input	2.059	7.744	3.177	69.746	9.702		0.000
Preferred Method	•	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc
PRODUCTION RATES							
Oil Rate	3,481	3,490	3,479	6,087	3,453		3,402
Water Rate	870	872	870	1,522	863		851
Liquid Rate	4,351	4,362	4,348	7,609	4,316		4,253
Gas Rate	3.31	3.32	3.31	5.78	3.28		3.19

Figure 453 4114

454 114 2,836

205 2,871 205 1,438

PRESSURES	and TEMP	ERATURES				
	Measured	Ky Grad	Xy Grad	Xy Grad	Ky Grad	Ky Grad
FLP	455	453	453	453	449	453
FLT	116	115	116	115	142	115
FWHP	455	454	454	455	453	454
FWHT	118	116	116	115	142	115
DHGP	2,714	2,729	2,836	2,836	3,254	2,831
DHGT	206	205	205	205	205	205
FBHP		2,870	2,871	2,871	3,293	2,866
FBHT		205	205	205	205	205
CHP	1,440	1,440	1,440	1,441	1,672	1,438

PR SENSITIVITY CALCULATIONS													
	Base Values												
Res Pres	4,944	4,944	4,951	4,944	6,592	4,922							
PI	2.50	2.50	2.51	2.50	5.27	2.48							

Graphic Screens – Templates

										TOTAL FIELD RATES	Measured	Preferred	SQC	MWA	OPT	
Peter	x Virtual Field									Oil Rate	30,070	27,670	28,282	29,907	26,765	STB/day
	⊸II P-01									Water Rate	10,988	10,387	10,356	10,947	9,947	STB/day
										Liquid Rate	41,058	38,057	38,638	40,853	36,712	STB/day
Overviews	Reports	Wells								Gas Rate	26.9	24.8	25.3	40.5	24.1	MMscf/day
Real Time Measurem	nents Workflow Inputs		Summary	Well Sur	veillance	Model-b	ased Analy	tics Tes	sts							
	Wellhead	457						Well-B	Based	VLP/IPR	Curves	Network-	Based			
	458	458	Calc Metho	d	VLPIPR	VLP	IPR	Choke	CHP	A	utoRate	SQC	MWA	Preferred		
GLLine	118	461	Sensitivity t	o Input	2.059	7.744	3.177	69.746	9.702		0.000					
1 584			Preferred N	lethod		0	0		0		0	\bigcirc	0	VLP/IPR		
61	R T		PRODUCTIO	N RATES												
	Con 1	Choke the	Oil Rate		3,481	3,490	3,479	6,087	3,453		3,402	3,486	3,700	3,481		
GL Rate			Water Rate		870	872	870	1,522	863		851	871	925	870		
1.000 MMscf/day			Liquid Rate		4,351	4,362	4,348	7,609	4,316		4,253	4,356	4,625	4,351		
(minisci) day		Flowline LP	Gas Rate		3.31	3.32	3.31	5.78	3.28		3.19	3.31	3.57	3.31		
Casing		455 Test														
1,440		116														
GL Choke	Caller Caller															
0.20 in.																
GL Allocation	and the second															
and a superior to the second second			PRESSURES	and TEMPE	RATURES								(Deviatio	ns with respe	t to Measu	red values)
and the second second				Measured	V Grad	Grad	Ky Grad	Grad	Ky Grad	1	Grad	Ky Grad	Grad	Grad		
			FLP	455	453	453	453	449	453		453	451	459	453		
	Stell Contrain		FLT	116	115	116	115	142	115		114	116	115	115		
	A A		FWHP	455	454	454	455	453	454		454	453	461	454		
			FWHT	118	116	116	115	142	115		114	116	117			
adda at a	HC		DHGP	2 714	2 729	2 835	2 835	3 254	2 831		2.835	2 833	2 726	2 729		
2	714		DHGT	2,714	2,725	2,000	2,000	205	2,001		205	2,000	205	205		
Statement of the local division of the local	205		FBHP	200	2 870	2 871	2 871	3 293	2 866		2 871	2 868	2 759	2 870		
			FBHT		2,070	2,071	205	205	2,000		205	205	205	205		
	1++1		СНР	1 440	1 440	1 440	1 441	1 672	1 438	-	1 438	1 439	1 336	1 440		
				2,110	2,110	2,110	-,	2,072	2,100		2,100	2,102	2,000	2,110		
Constant	X		IPR SENSITI	VITY CALCU	ILATIONS								(De	viations with r	espect to Ba	ase values)
Sensors			Res Pres	base values	4.041	4.054	4.044	6.500	4.000		4.000	4.044	4.005	1.045		
0E	8		PI	4,944	4,944	4,951	4,944	6,592	4,922		4,892	4,944	4,995	4,944		
	River R	and the second second		2.50	2.50	2.51	2.50	5.27	2.48		2.45	2.50	2.55	2.50		

Fundamentals – Data Model

The two data models are brought together during the deployment:

- 'Engineering' Data Model
 - Knows what is required
- 'Data' Data Model
 - Knows what is provided

The structure afforded by the Data Model means that the system can scale easily from 10's of equipments to 1,000's of equipments

Engineering Workflows

- With a model added to Model Catalogue, IFM is able to execute engineering workflows against that model
- The same components that were shown in Resolve on Monday are available in IFM
 - Visual Workflows
 - Data Objects
 - Application Co-ordination