

Algorithm Advice

This document contains a brief overview of the workflows and algorithms available inside the $Move^{TM}$ software suite and their key applications.

Algorithms are simplified models of the geometric and mechanical processes that produce geological structures during deformation. The exact algorithm used should be determined by the mechanics of the individual horizons and boundary conditions. It is important to understand that a model might be restorable with different algorithms and thus will show slightly different restored geometries. Therefore, a restored model does not necessarily represent an exact pre-deformation geometry or the path followed by the structural evolution.

The main workflows and algorithms within Move are summarised in the diagram below.

Workflows

Testing of geological concepts and ideas requires the problem to be defined, a
work strategy and also the level acceptable errors needs to be taken into
consideration. To develop a work strategy we need to ask ourselves the "what if..."
question and use structural modelling as a tool to test ideas. Best practice uses a
variety of restoration algorithms to establish sensitivity and to develop an
understanding of deformation history.

Workflow	Overview	Algorithm
Line length	First pass quick analysis	Line Length Unfolding
and surface	unfolding.	Flexural Slip Unfolding
area balance		Simple Shear Unfolding
Block	Validation technique, fitting	Flexural Slip Unfolding
Restoration	fault blocks together in Map	Simple Shear Unfolding
and Jigsaw	and Section view. It can	With manual
Fitting	also be used for rigid block	transformation (Jigsaw
	restoration.	Fitting)
Sequential	Shows the intermediate stages	Flexural Slip Unfolding
restoration	between fully deformed and	Simple Shear Unfolding
	fully restored. Provides	Simple Shear (inclined or
	insights into the structural	vertical) Fault Parallel Flow
	evolution and is a more	Fault Bend Fold
	rigorous test. Growth	Decompaction
	stratigraphy (thickness	Isostasy
	change) area shown as	
	intermediate stages.	
Forward Modelling	Deformation of the hanging wall is the result of movement	Simple Shear (inclined or vertical) Fault Parallel Flow
	over a fault plane. Try to test	Trishear
	ideas about how the section	Fault Bend Fold
	got to the present-day state.	Fault Propagation Fold Detachment Fold
		Compaction
		Isostasy

Fault Construction

Fault construction techniques are based on the principle that deformation observed in the hanging wall is controlled by the geometry of the fault across which it moved. The shape of a horizon can therefore be used to predict the geometry of the fault that controlled its deformation. Depth to detachment methods are based on area balance. These construction algorithms can be used to:

- Predict fault geometry at depth;
- Define detachment depth.

Algorithm	Overview	Application
Constant Heave 2D	Based on the principles outlined by White <i>et al.</i> (1986). An assumption is made that the shape of folds in the hanging wall is derived from the movement along a fault.	Listric fault construction.
Constant Slip 2D Constant Bed	Based in the work of Williams and Vann (1987), the algorithm moves the hanging wall along displacement trajectories parallel to the fault surface (fault parallel flow). Based on the principles discussed by Davison	In some situations these methods can also be applied to inverted and
Length 2D	(1985). The method assumes that flexural slip folding occurs within the hanging wall and implies that net slip on the fault decreases with increasing fault depth.	compressional systems.
Simple Depth to Detachment 2D	Calculated using the area balance method of Hassack (1979); the area between the regional, hangingwall and the fault plane is equal to the area of extension or contraction.	Extensional, shorting
Area-Depth Method 2D	Modified from the Area-Depth method of Groshong (1994); horizon elevation relative to original horizon height is plotted to predict the detachment.	or inversion regimes.
Move-On-Fault Algorithms	Can use used interactivity to adjust fault geometries to match data which defines hanging wall geometry.	Refer to Move-On- Fault table.

References

Williams, G and Vann, I., 1987, The geometry of listric normal faults and deformation in their hangingwalls: *Journal of Structural Geology*, **9(7)**, 789-795.

displacement: Journal of Structural Geology, 8, 209-210.

Groshong Jr., R.H., 1994, Area balance, depth to detachment, and strain in extension: *Tectonics*, **13(6)**, 1488-1497.

White, N.J., Jackson J. A., and McKenzie, D. P., 1986. The relationship between the geometry of normal faults and that of the sedimentary layers in their hangingwall: *Journal of Structural Geology*, **8**, 897-910. Davison, I., 1986, Listric normal fault profiles: calculation using bed-length balance and fault

Hossack, J.R., 1979, The use of balanced cross-sections in the calulation of orogenic contaction: a review. *Journal Geol. Soc. London*, **136**, 705-711.

Unfolding

Unfolding can be used as a quick first-order check for line length inconsistencies, and allows quantitative predictions to be made about a region's geological history or as a step during a sequential restoration to remove deformation. Unfolding can be used to:

- Identify locations where horizons are missing or incorrectly interpreted;
- Quantify tectonic shortening or extension through time;
- Restore deformation for example by unfolding to regionals;
- Capture strain which can be used as a proxy for fracture models.

Algorithm	Overview	Application
Line Length 2D	Simply the length of the line.	Identify missing or incorrectly interpreted horizons.
		Quantify tectonic shorting or extension through time.
Horizontal Length 2D	Horizontal length from the start and end of each line. Does not maintain line length or volume.	Quantify the amount of extension in a basin.
Simple Shear 2D / 2.5D	Layer deformed by penetrative, closely spaced slip planes, using a vertical or inclined shear vector. Maintains area and volume but not line length.	Use to maintain area and volume but not line length. Typically used for extensional regimes and in areas of salt tectonics.
Flexural Slip 2D / 2.5D	Layer parallel slip between the beds. Analogous to flexing a package of papers.	Use to maintain area / volume and line length. Typically used for fold and thrust belts, inversion structures and in areas of salt tectonics.
Geomechanical 3D	Mass Spring algorithm; an iterative numerical technique designed to minimise the strain within a solid body while attempting to retain its original shape.	Well suited to modelling geological structures because it mimics natural forces using physical laws of motion. It does not require that a fully water tight model is built as with finite element models.

References

Geomechanical key technical papers:

Baraff, D., and Witkin, A., 1998, Large Steps in Cloth Simulation: *Proceedings of ACM Siggraph*, 43-54. Bourguignon, D. and Cani, M., 2000., Controlling Anisotropy in Mass-Spring Systems: *Proceedings of the Eleventh Eurographics Workshop on Computer animation and Simulation, Springer Computer Science*, 113-123.

Terzopoulos, D., Platt, J., Barr, A., Fleischer, K., 1987, Elastically Deformable Models: In Proceedings of ACM Siggraph 1987 Computer Graphics, **21(4)**, 205-214.

Provot, X., 1995, Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behaviour: *Graphics Interface*, 147-155.

Move-on-Fault

Move-on-Fault algorithms are kinematic algorithms that aim to mimic the mechanisms of deformation seen in the field, measured from geometric relationships of structures. The exact algorithm you use should be determined by mechanics of the individual horizons and boundary conditions.

Simple Shear, Fault Parallel Flows and Trishear can all be used to model both shorting and extensional structures, whereas Fault Bend Fold, Detachment Fold and Fault Propagation Fold are used to mimic shorting structures. They are very powerful tools for guiding interpretation, understand deformation history and in 3D for creating inputs for advanced modelling (for example for basin modelling and / or sediment modelling and geotechnical studies; as fracture proxies). Amongst other things, forward modelling and restorations may:

- Highlight mis-picked horizons and give ideas about how to adjust hanging wall volumes;
- Show issues with fault linkage and give a guide to correct fault displacements;
- Help guide interpretation of data;
- Provided concepts for the geological evolution of an area.

Algorithm	Overview	Application
Block	Transformation (rotation and	Used when there is no internal
Restoration	translation) are used to restore	deformation expected within
2D / 2.5D	offsets along faults.	faulted blocks.
		Forward modelling and restoration.
Simple	Models the relationship between	Most applicable to extensional
Shear	fault geometry and hanging wall	tectonic regimes, where anticlinal
2D / 2.5D	deformational features. Simple	rollover structures have developed
	Shear, models deformation where	on non-planar normal faults.
	deformation is diffuse throughout	
	the hanging wall rather than	Can be applied to the restoration or
	discrete slip between beds as in	forward modelling of inverted
	flexural slip.	basins and growth faults, where
		the thickness of beds may vary.
		Forward modelling and restoration.
Fault	Based on the continuing work of	Best suited for modelling hanging
Parallel Flow	Egan <i>et al.</i> (1997) and is based	wall movement on faults from fold
2D / 2.5D	on Particulate Laminar Flow over	and thrust belts where the majority
	a fault ramp. Particles in the	of the deformation occurs
	hanging wall translate along flow	discretely between bed interfaces
	lines, which are parallel to the	(flexural slip).
	fault plane.	
		Forward modelling and restoration.

Fault Bend	Based on the work of Suppe	Forward modeling of fault bend
Fold	(1983a) and based on the	folds and associated growth strata
2D / 2.5D	principle that deformation in the	and the effects of erosion.
	hanging wall reflects the	
	geometry of the underlying fault.	
Detachment	Based on the work of Poblet &	Forward modelling in contractional
Fold	McClay (1996) and used for folds	settings in which a thick ductile
2D	that form above blind thrusts	layer (such as salt or shale) takes
	where horizontal displacement	up the accommodation space
	becomes vertical. Detachment	produced during deformation.
	folds can take a variety of	-
	geometries including kink band,	
	chevron and box detachment	
	folds.	
Fault	Incorporates the work of Suppe &	Forward modelling contractional
Propagation	Medwedeff (1990), beds in the	structures in which forelimb
Fold	trailing limb will maintain layer	deformation proceeds the
2D	thickness whilst those in the	advancing fault tip and hanging
	forelimb may thicken or thin as	wall geometries mirror that of the
	the fault advances and the beds	fault.
	rotate. One the fault has passed	
	through a horizon it will	Used to model the association of
	experience no further footwall	asymmetric folds with one steep or
	deformation. The algorithm allows	overturned limb to thrust faults.
	both constant bed thickness and	
	fixed-axis models to be produced	
	whilst maintaining the properties	
	of self-similar growth band	
	migration.	
Trishear	Developed in collaboration with	Modelling fault-related folds of
2D / 2.5D	Colorado State University (Erslev,	extensional or shorting structures.
	1991). It models geological	
	structures by deforming beds	Can be used as alternative to
	within a triangular zone of shear	models for fault-related folds.
	emanating from the tip of a	
	propagating fault.	Forward modelling and restoration.

<u>References</u>

Egan, S.S., Buddin, T.S., Kane, S.J., and Williams, G.D., 1997, Three-dimensional modelling and visualisation in structural geology: New techniques for the restoration and balancing of volumes, In: Proceedings of the 1996 Geoscience Information Group Conference Conference on Geological Visualisation: *Electronic Geology*, **1(7)**, 67-82.

Suppe, J., 1983a, Geometry and kinematics of fault-bend folding: *American Journal of Science*, **283**, 684-721. Poblet, J and McClay. K, 1996, Geometry and Kinematics of Single-Layer Detachment Folds: *AAPG Bulletin*, **80(7)**, 1085-1109.

Suppe, J., Medwedeff, D.A., 1990., Geometry and kinematics of fault-propagation folding: *Eclogae Geologicae Helvetiae* **83**, 409–454.

Erslev, E.A., and Rogers, J.L. 1993, Basement-cover geometry of Laramide fault-propagation folds, In: Schmidt, C.J., Chase, R., and Erslev, E.A., (eds.), Laramide basement deformation in the Rocky Mountain foreland of the western United States: *G.S.A. Special Paper* **280**, 125-146.

Hardy, S., and Ford, M., 1997, Numerical modelling of trishear fault-propagation folding and associated growth strata: *Tectonics*, **16(5)**, 841-854.

Decompaction

The subsidence of a sedimentary basin can be attributed to four processes: tectonic subsidence, water and sediment loading, thermal subsidence and sediment compaction. The aim of backstripping is to analyse subsidence history by progressive reversal of the depositional process. Part of the backstripping process is to account for sediment compaction. Backstripping removes from each sedimentary layer the effects of: sediment compaction, water and sediment loading.

- Provides valid palinspastic sections through time giving true stratigraphic thicknesses;
- Better indications on volume and area changes of units though time;
- Better indications on subsidence history.

Algorithm	Overview	Application
Sclater-Christie 2D / 2.5D	Based on the work of Sclater & Christie (1980); it assumes that porosity decreases with increasing depth (Compaction) and increases with decreasing depth (Decompaction).	The standard method for areas of mixed sediments.
Baldwin-Butler 2D / 2.5D	Based on the work of Baldwin and Bulter (1985).	This is most appropriate when working with shales.
Dickinson 2D / 2.5D	Based on the work of Dickinson (1953).	This is most appropriate when working with shales over 200 m thick (overpressured).
Isostasy only 2D / 2.5D	Model the effects of isostasy on the section without including decompaction.	Refer to Isostasy table.

References

Dickinson, G. 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. *The American Association of Petroleum geologists Bulletin*, **37**, 410-432.

Sclater, J.G., and Christie, P.A.F. 1980. Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the Central North Sea Basin. *Journal of Geophysical Research*, **85**, 3711-3739.

Baldwin, B., and Butler, C.O. 1985. Compaction curves. *The American Association of Petroleum geologists Bulletin*, **69(4)**, 622-626.

Isostasy

Isostasy is the theoretical equilibrium that exists in the Earth's crust. If this equilibrium is disturbed, for example, as a result of erosion or deposition, compensatory movements in the Earth's crust occur. It is important from regional to field scale as it affects:

- Restored shape of horizons and faults which are important for geometries of traps;
- Palaeo-topographies, important for sediment modelling predict erosion;
- Absolute heights of horizons during restoration, important for maturation studies.

Overview	Application
Assumes a brittle crust floating	Loads that have consistent lateral
on a fluid layer. The crust is of	thickness; not applicable in sections with
finite strength and cannot	laterally variable loads.
support its own weight and the	
crust has no strength. It	Salt restoration.
produces a vertical movement	
(i.e. no flexure). This theory is	
backed by evidence from deep	
seismic refraction surveys and	
mountains underlain by thick	
crust and oceans by thin crust.	
Assumes the crust has an	Loads that have variable lateral
inherent strength and rigidity	thickness.
causing it to flex as a load is	
applied. How much the crust	Tectonic loads: Sedimentary basins,
deforms is controlled by: a)	mountain belts and foreland areas.
elastic thickness, b) load and	
mantle density and c) the	To defined its control on sequence
Young's Modulus. This theory	thicknesses, onlap/offlap relationships,
is backed by evidence from	subsidence, uplift and erosion.
isolated volcanoes like Hawaii	
and flexural uplift of areas	As a rule of thumb, when the
adjacent to loads such as	dimensions of the model are >15 km or
mountains, producing foreland	as factor of elastic and thickness and
basins.	flexural wavelength.
	Assumes a brittle crust floating on a fluid layer. The crust is of finite strength and cannot support its own weight and the crust has no strength. It produces a vertical movement (i.e. no flexure). This theory is backed by evidence from deep seismic refraction surveys and mountains underlain by thick crust and oceans by thin crust. Assumes the crust has an inherent strength and rigidity causing it to flex as a load is applied. How much the crust deforms is controlled by: a) elastic thickness, b) load and mantle density and c) the Young's Modulus. This theory is backed by evidence from isolated volcanoes like Hawaii and flexural uplift of areas adjacent to loads such as mountains, producing foreland

References

Watts, A.B, 2001, Isostasy and flexure of the lithosphere, Cambridge Univ. Press.